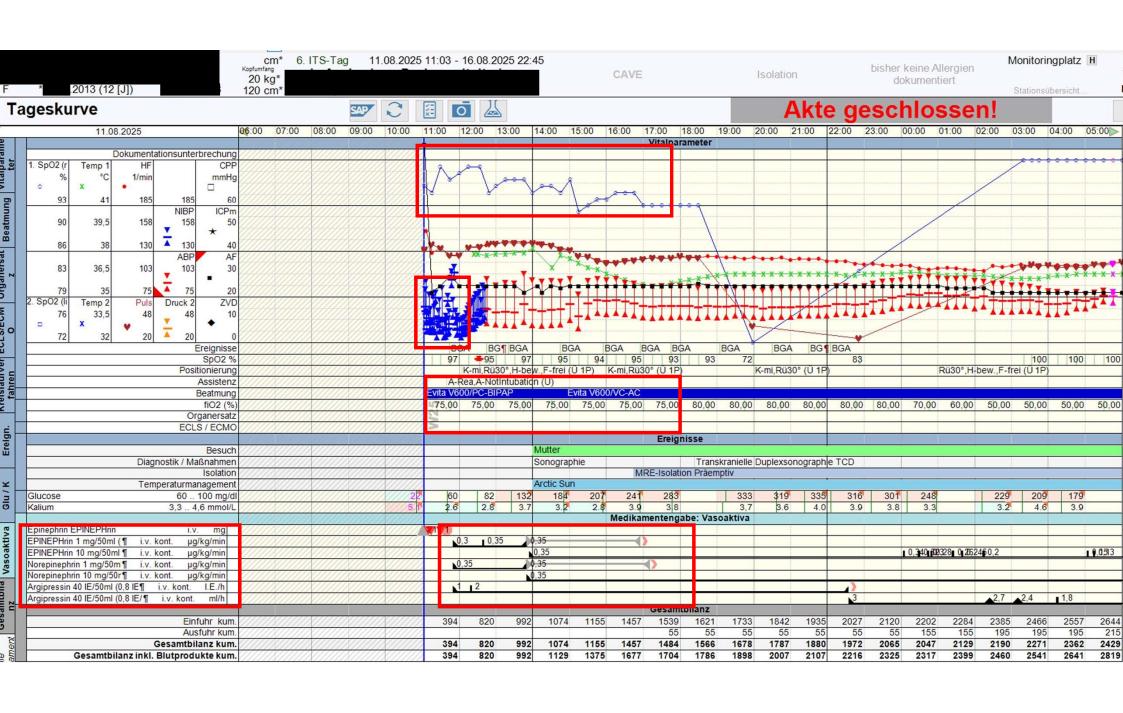


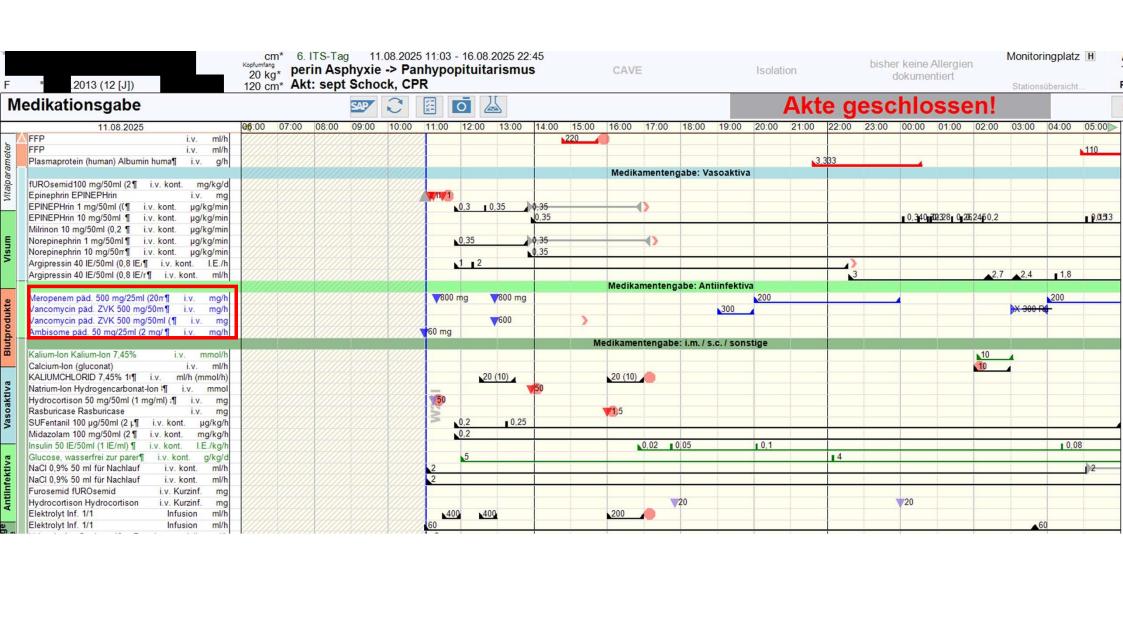
Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine Invasive infections and sepsis caused by Group A streptococci

- A rising threat?

Martin Grieser | August 26, 2025


Agenda

- 1. Introduction to GAS
- 2. Pathogenesis
- 3. Clinical manifestations
- 4. Epidemiology
- 5. Outlook



Case

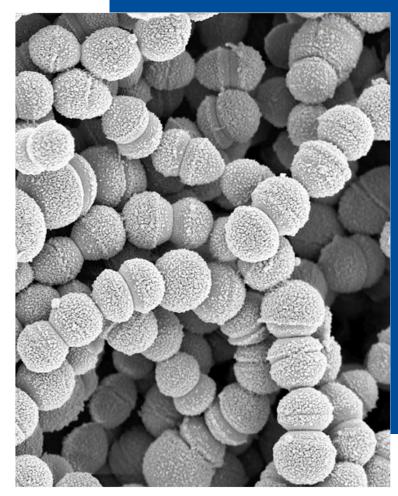
11.08.20	025	10:00	11:00 1:	2:00 1	3:00 1	4:00 1	5:00	16:00	17:00 18	3:00 1	9:00 2	0:00 21	:00 2		3:00 0	00:00 01:00	02:00 0	3:00	04:00	05:00	06:00	7:00	08:00	09:00
Material		Venous	Venous	Arterial	Arterial	Arterial	Arterial	Arterial	Arterial		arteriell	Arterial	Arterial		Arterial	Arterial	Arterial	Venous	Arterial	ST No	tSpecified	Arterial	ST Not ¶	Art
FIGO		277727	75.0	75.0	75.0	75.0	75.0	70101101	210		80	80.0	80.0	80.0	80.0	70.0	60.0	50.0	50.0	01_11	50.0	50.0	50.0	
pH	70	7/158	7.220	7.209	7.190	7.228	7.319	7.304	7.302		7,299	7,300	7.295	7.301	7.312	7.313	7.336	7.262	7.320		7.367	7.374	7.400	
pO2	mmHq	26.9		118	107	80.5	71.7		67.6		74,3	80.1	81.7	84.7	106	119	122	44.7	96.0		99.5	100	113	
pCO2	mmHa	39.3	46.0	43.5	43.0	53.0	37.7	36.6	37.8		40	39.0	40.8	39.8	39.5	36.8	33.9	48.6	41.3		39.4	40.2	38.2	
sO2	%	///35.7	59.4	97.7	95.8	92.7	92.1	91.0	90.7		92,3	93.4	94.1	94.6	96.7	97.4	97.8	72.1	96.5		97.1	97.2	98.0	
HCO3	mmol/l	13.9	18.1	17.3	15.8	21.3	18.8	17.7	18.1		19,1	18.6	19.2	19.0	19.4	18.1	17.6	21.2	20.7		22.1	22.9	23.1	
SBE	mmol/l	///-14.8	-8.2	-10.6	-10.9	-5.1	-6.2	-7.5	-7.1		-6.3	-6.6	-6.1	-6.2	-5.7	-6.9	-7.1	-4.8	-4.4		-2.4	-1.6	-1.0	_
Hb	12 15,4 g/dl	///10.9	10.1	9.3	9.1	9.3	8.8	8.6	9.2		10.0	10.0	10.1	10.0	10.2	9.6	9.5	9.9	10.0		9.5	9.3	9.3	
Hkt	36 45 %	///33.3	31.3	28.5	28.2	28.7	27.2	26.6	28.6		30,9	30.8	31.1	30.9	31.6	29.8	29.3	30.6	31.0		29.5	28.9	28.9	
MetHb	%	1.4	2.1	1.3	1.9	1.8	1.8	1.6	1.5		1,6	1.5	1.4	1.0	1.4	1.4	1.5	1.6	1.6		1.4	1.4	1.4	
CO_Hb	%	0.9	0.4	0.5	0.0	0.3	0.3	0.3	0.2		0,2	0.1	0.2	0.3	0.0	0.1	0.1	0.2	0.2		0.3	0.3	0.4	
Natrium	134 143 mmol/l	///145	150	151	148	152	152	150	150		149	149	150	149	150	150	151	152	151		152	152	151	
Kalium	3,3 4,6 mmol/l	////5.1	2.6	2.8	3.7	3.2	2.8	3.9	3.8		3,7	3.6	4.0	3.9	3.8	3.3	3.2	4.6	3.9		3.7	3.7	3.7	
Calcium_ion	1,11 1,25 mmol/l	1.08	1.04	1.03	1.14	1.06	1.02	1.03	1.04		1,08	1.06	1.08	1.06	1.07	1.02	1.05	1.35	1.23		1.15	1.15	1.16	
Chlor	96 109 mmol/l	///112	116	110	121	118	120	122	120		119	122	120	121	123	123	123	121	125		122	122	122	
Glucose	60 100 mg/dl	//////50	60	82	132	18/	207	2/1	283		333	319	335	316	301	248	229	209	179		114	111	93	
Laktat	5 20 mg/dl	/////88	110	108	80	73	74	73	75		74	69	73	70	69	61	57	63	57		47	46	42	
				- 1		- 1		- 1					Elektro	lyte										
Calcium/P	2,1 2,55 mmol/l																		2.01					
Phosphor/P	0,95 1,6 mmol/l	///////								2.39									1.68					
Magnesium/P	0,66 0,95 mmol/l									0.92									0.93					
			10)									K	linische	Chemie										
Kreatinin/P	0,53 0,79 mg/dl		2.94							2.48									2.34					
Hst/P	15 36 mg/dl	//////	110							118									114		-			
Hsr/P	2,2 6,4 mg/dl	7//////	8.3																	n.				
Alhumin/P	38 54 g/dl	777777X	25.1							21.6									23.6					
CRP/P	5 mg/l		234.2																319.2					
PCT/S	0,09 ug/l	11/1///	>100.00																>100.00		-			
AL1_37/P	31 0/1	777777	208																178					
AST_37/P	16 46 U/I		659							640									482					
AP_37/P	129 417 U/I																		76					
GGT_37/P	5 36 U/I		43																47					
BiliT/P	1,2 mg/dl		0.27																0.79					
BiliC/P	0,3 mg/dl		0.21	100	0.7	0.5	0.1	0.1	de			14.0	0.6	0.0	1 4 4	4 3		1.0	0.79					
tBil	0.2 1	//// 0.ht	K	0.2	0.7	0.6	0.7	0.6	0.9	6.77		1.0	0.8	0.9	1.0	1.1	1.1	1.2	1.1	II.	1.1	1.1	1.1	
CK/P	167 U/I		3711							6476														
CK-MB/P	24 U/I		216.7																					
CKMB%	%		6																					
Trop_T/P	14 ng/l		105							0.55											1			
LDH_37/P	120 300 U/I		879							856														
NT-pro BNP HP	370 na/l	11/1////	19453											Double II of										
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.5										kleines B	lutbild										
Hb/B	12 15,4 g/dl		10.3																9.7					
Hkt/B	0,355 0,45 1/1		0.310																0.280					
Ery/B	3,9 5,2 /pl		3.4																3.1					
Leuko/B	4,02 11,4 /nl	11/1/1/1/1	3.48																14.62					

Microbiology findings

Group A Streptococcus

- Pharyngeal swab
- Blood cultures (drawn after initiation of ABx) negative

Keim 2 reichliches W	achstum von			ptococcus	pyogenes	
Keim 3 Keim 4 geringes Wach Staphylococcus aureus PVL-Gen (Panton-Valen reichliches Wachstum	: tine-Leukozi		iv.	hylococcus	aureus	
Mäßiges Wachstum von ANTIBIOGRAMM:		iaceae	Keim 3		Keim 5	Keim
Reim o Penicillin		S <=0.06		R >=0.5		
Ampicillin		5 <=0.00	r:	R >=0.5		
Nacillin				5.0.5		
Cefovitin-Screen				ne		
Ampicillin/Sulbactam				S		
Piperacillin				R		
Piperacillin/Tazobact	am			S		
efazolin				S		
Cefuroxim				S		
Ceftriaxon				I		
Imipenem				S		
Meropenem				S		
Levofloxacin		I Θ.5		R >=8.0		
Moxifloxacin		S 0.12				
Gentamicin		-		S <=0.5		
Tobramycin				S		
Teicoplanin		S <=0.12		S <=0.5		
Vancomycin		S <=0.12		S 1.0		
Induc. Of Indamye in Res		iie		iie		$\overline{}$
Erythromycin		R >=8.0		R >=8.0		
Clindamycin		R >=1.0		S 0.25		
retracyciin		K >=10.0		S <=1.0		
Tigecyclin Linezolid		S <=0.06 S <=2.0	V	S <=0.12 S 2.0		
Chloramphenicol		5 <=2.0		5 2.0		
Daptomycin		-		S 0.5		
Fosfomycin				. <=8.0		
Fusidinsäure				S <=0.5		
Mupirocin				S <=1.0		
Rifampicin		S <=0.06		S <=0.03	ł.	
		0.00		0.00	,	


Introduction

Introduction

Subtitle (optional)

- Group A Streptococci (GAS) are bacteria commonly causing mild infections like pharyngitis.
- However, they can lead to severe, invasive infections
- Rising incidence of invasive GAS infections makes this a public health concern

Streptococcus pyogenes
https://www.rki.de/DE/Themen/Infektionskrankheiten/Infektionskrankhei
ten-A-Z/S/Scharlach/Scharlach.html

Group A Streptococcus

• GAS lyses the red blood cells in the agar, resulting in clear colourless zones around the area of bacterial growth

- Lancefield classification: classifies catalase-negative gram-positive bacteria based on the carbohydrate composition of bacterial antigens found on their cell walls
- Streptococcus pyogenes is grouped as 'A' in the Lancefield system and is thus commonly called Group A Streptococcus (GAS)

Pathogenesis

Transmission

- GAS survival requires an unbroken cycle of transmission:
 - → adherence to the primary infection site (skin or throat)
 - →colonization and proliferation
 - →defence against both innate and adaptive immune systems
 - →subsequent dissemination to a new host
 - →Incubation period 1-3 days (non invasive), or up to 30 days (iGAS)

Transmission

- New virulence strategies employed by GAS to manipulate host defence mechanisms are being discovered:
 - → cleavage of Gasdermin A (GSDMA) by the GAS protease streptococcal pyrogenic exotoxin B (SpeB) has been shown to trigger <u>host cell pyroptosis</u>
 - → mucosal-associated invariant T cells (MAIT cells) have been recently identified as highly activated in patients with STSS
 - → primary contributors to the cytokine storm associated with this disease

Pathogenesis

Virulence Factor	Function	Associated Clinical Impact	Relevant Strains (Examples)
M Protein (emm types)	Inhibits phagocytosis, promotes adhesion	Linked to invasiveness, tissue tropism	emm1, emm3, emm4, emm12, emm89 [6,14]
Streptolysin O (SLO)	Pore-forming cytotoxin damaging host cells	Beta-hemolysis, tissue injury	Broadly distributed [8]
Streptolysin S (SLS)	Cytolytic toxin contributing to hemolysis	Tissue damage, immune evasion	Broadly distributed [8]
Streptokinase	Converts plasminogen to plasmin, promotes fibrinolysis	Facilitates tissue invasion	Broadly distributed [8]
Hyaluronidase	Degrades connective tissue matrix	Promotes spread through tissues	Broadly distributed [8]
SpeB (cysteine protease)	Degrades host proteins and immune mediators	Modulates immune response, promotes tissue destruction	Various emm types [8]
Pyrogenic Exotoxins (SpeA, SpeC, etc.)	Superantigen activity leading to massive cytokine release	Linked to STSS, severe invasive disease	SpeA, SpeC in emm1, emm3, M1UK [9,10,11,12,13]

STSS: Streptococcal toxic shock syndrome.

Clinical manifestation

Clinical Manifestations

overview

- Asymptomatic colonization!
- invasive and non-invasive infections of varying severity
- may be accompanied by toxin-mediated disease such as
 - → streptococcal toxic shock syndrome (STSS)
 - → scarlet fever
- post-infectious immune sequelae such as
 - → acute rheumatic fever
 - → rheumatic heart disease
 - → post-streptococcal glomerulonephritis

Clinical Manifestations

Invasive disease

- Necrotizing fasciitis with deep tissue destruction; surgical emergency
- Cellulitis: rapidly spreading erythema, edema, pain
- Myositis: rare but serious
- Streptococcal toxic shock syndrome (STSS)
 - → Hypotension, multiorgan failure, rash, coagulopathy
- Bacteremia, and sepsis
 - → Seeding distant sites
- Meningitis
- Pneumonia
 - → often with empyema or pleural effusion.

Clinical Signs

Invasive disease

- High fever
- Shivering
- Headache
- Respiratory distress
- severe pain in arms or legs
- sore throat
- red or sore skin around cuts or wounds
- abdominal pain

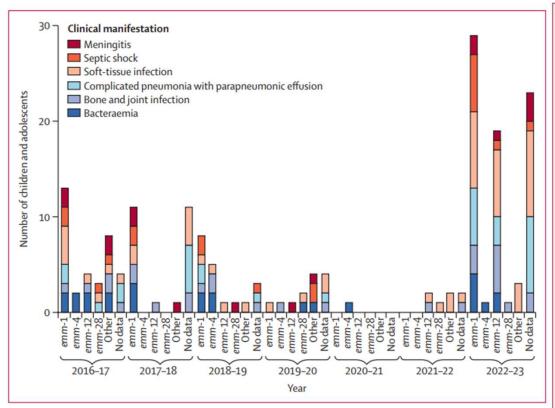
Treatment

- No resistance against B-lactam ABx known in the past
- Non-invasive disease:
 - → Penicillin or amoxicillin 10 days (5 days?)
 - → Alternative in children: Oral cephalosporines (e.g. cefaclor)
 - → Allergies: oral macrolides (e.g. erythromycin, azithromycin) 10-30% resistance rates
 - → Cotrimoxyzol and flourochinolones generally *not* effective
- Invasive disease:
 - → Penicillin i.v. + Clindamycin + immunoglobulin

Resistance

Esposito et al. Microorganisms 2025, 13(8), 1871

Region/ Country	Antibiotic	Resistance Rate (%)	Associated emm Types/Notes
Taiwan	Macrolides	18.1% (2000–2009) → 58.4–61.6% (2010–2019)	Predominantly emm12 strains [40]
China	Macrolides	~97.5%	High resistance among both patients and carriers
China	Clindamycin	~97.3%	Significant resistance documented
China	Tetracyclines	~95.7%	Notable regional variability
Australia	Tetracyclines	~10%	Lower resistance rates observed
China	Tetracyclines	>80%	Substantially higher than global averages
Hungary	Quinolones	~10%	Notable but relatively low resistance overall
Japan	Quinolones	~14%	Emerging resistance trend



Subtitle (optional)

- GAS can be classified into more than 220 emm types (based on the gene sequence of the amino terminal of the surface-exposed M protein)
- different patterns of regional and global distribution
- Increasing global and regional incidence of invasive GAS since 2019
- Surges in winter seasons and post-COVID periods
- Higher risk in children, elderly, and immunocompromised individuals

Nygaard et al., Lancet Child Adolesc Health 2024; 8: 112-21

	Paediatric int	ensive care unit	t	Mortality			
	Before 2022–23	2022-2023	p value*	Before 2022–23	2022-2023		
Phenotypes	17	17		3	3		
Non-focal bacteraemia	0/18 (0%)	0/7 (0%)	1.00	0/18 (0%)	0/7 (0%)		
Bone and joint infection	0/18 (0%)	0/11 (0%)	1.00	0/18 (0%)	0/11 (0%)		
Soft-tissue infection†	3/27 (11%)	7/27 (26%)	0.29	0/27 (0%)	1/27 (4%)		
Complicated pneumonia with parapneumonic effusion	4/14 (29%)	1/17 (6%)	0.15	0/14 (0%)	0/17 (0%)		
Septic shock	5/11 (46%)	6/8 (75%)	0.35	1/11 (9%)	2/8 (25%)		
Meningitis	5/10 (50%)	3/6 (50%)	1.00	2/10 (20%)	0/6 (0%)		
mm variants	17	17		3	3		
emm-1	10/33 (30%)	9/29 (31%)	0.53	2/33 (6%)	2/29 (7%)		
emm-12	1/9 (11%)	2/19 (11%)	1.00	0/9 (0%)	0/19 (0%)		
emm-28	1/7 (14%)	0/1 (0%)	1.00	1/7 (14%)	0/1 (0%)		
emm-4	1/9 (11%)	0/1 (0%)	1.00	0/9 (0%)	0/1 (0%)		
Other variants	1/16 (6%)	0/3 (0%)	1.00	0/16 (0%)	0/3 (0%)		
Not available	3/24 (13%)	6/23 (26%)	0.49	0/24 (0%)	1/23 (4%)		

Data are n, n/N (%), or p value. Denominators are the total number of children and adolescents with each phenotype or *emm* variant who were either admitted or not admitted to PICU. *p values were derived from Fisher's exact test—except for soft tissue and *emm*-1, which were derived from Pearson's χ^2 .†Five (19%) of 27 children with soft-tissue infections had necrotising fasciitis in 2022–23 vs one (4%) of 27 in 2016–17 to 2021–22 (p=0·19).

Table 3: Danish children and adolescents with invasive group A streptococcal disease who received treatment at a paediatric intensive care unit or died in 2022-23 vs 2016-17, 2017-18, 2018-19, 2019-20, 2020-21, and 2021-22

Nygaard et al., Lancet Child Adolesc Health 2024; 8: 112-21

- historically low iGAS incidence during the COVID-19 pandemic
- 4-fold increase in complicated pneumonia with parapneumonic effusion
- 4.5-fold increase in severe soft-tissue infections
- GAS resurgence in 2022–23 was associated with reduced immunity to GAS due to historically low GAS and iGAS incidences during the COVID-19 pandemic
- the resurgence might have been influenced by the increase in viral infections after the COVID-19 pandemic
- high morbidity of iGAS highlight iGAS as a major invasive bacterial infection in children, surpassing meningococcal disease in Denmark.

Risk factors

Nygaard et al., Lancet Child Adolesc Health 2024; 8: 112-21

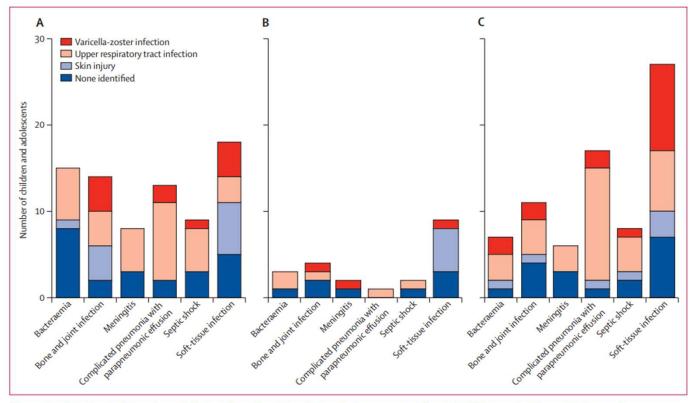
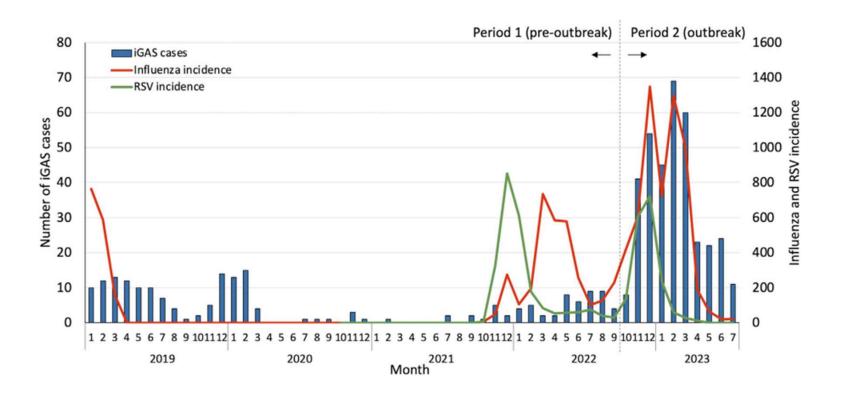



Figure 3: Predisposing conditions for each distinct phenotype of invasive group A streptococcal disease in children and adolescents in Denmark (A) 2016–17, 2017–18, and 2018–19. (B) 2019–20, 2020–21, and 2021–22. (C) 2022–23.

Severity of cases

Cobo-Vázquez et al., International Journal of Infectious Diseases, 2025; 159.

Severity of cases

Cobo-Vázquez et al., International Journal of Infectious Diseases, 2025; 159.

- higher PICU admissions (51.3% vs. 30.8%, P < 0.001)
- Pneumonia was the most common syndrome (32.3%)
 - → with pleural effusion in 58.3%
- most frequent emm1 (56.1%) (increased ICU-rates) and emm12 (27.1%)

Severity of cases

Cobo-Vázquez et al., International Journal of Infectious Diseases, 2025; 159.

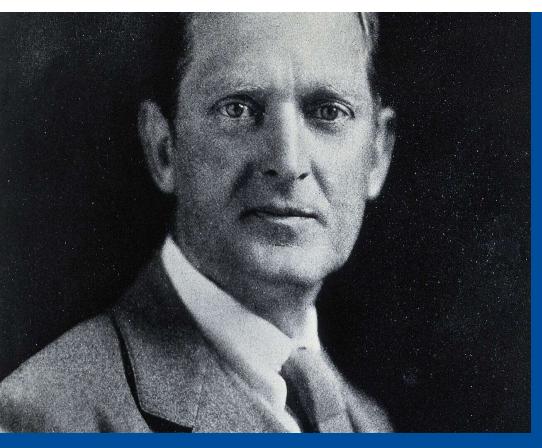
- Factors associated with PICU were
 - → streptococcal toxic shock syndrome (STSS)
 - → Pneumonia
 - → necrotizing fasciitis
 - → acute kidney failure
 - → previous consultation before diagnosis
- Mortality: 2% (n=11)
- Factors associated:
 - → Sepsis
 - → STSS
 - → central nervous system infection

Recent Surge in Cases

- Reports from CDC, ECDC, and other national bodies
- Marked increase in cases post-2022
- Possible reasons: reduced immunity post-pandemic, viral co-infections
- super antigens: introduced after infection by phages
- Facilitate mucosal colonization and immuno-evasion (e.g. neutrophil killing by DNAse)

Outlook

Prevention


- GAS-Vaccines:
 - → Several attempts from 1920 to our day and age
 - → No breakthrough
- Varicella immunization may reduce iGAS incidence in children
- Education (ABS, AMR)
- Hygiene measures
 - → Very susceptible to general disinfectants
 - → Quarantine 24h
 - → No special measures for contacts
 - → Sepsis/STSS/necrotizing fasciitis: Chemoprophylaxis for close contacts
- Early treatment of mild streptococcal infections

Future developments

Esposito et al. Microorganisms 2025, 13(8), 1871

- novel antimicrobial approaches as adjuncts or alternatives to conventional antibiotics.
 - →bacteriophage-derived lysins with specific lytic activity against GAS
 - →engineered antimicrobial peptides with broad-spectrum efficacy
 - →anti-virulence compounds targeting toxin production
 - →particularly relevant for managing life-threatening iGAS infections
- Continued research and investment necessary

Infectious Disease is one of the few genuine adventures left in the world.

Hans Zinsser (1878-1940), "Rats, Lice an History"

